Abstract

Metal-organic-frameworks-derived nanostructures have received broad attention for secondary batteries. However, many strategies focus on the preparation of dispersive materials, which need complicated steps and some additives for making electrodes of batteries. Here, we develop a novel free-standing Co9S8 polyhedron array derived from ZIF-67, which grows on a three-dimensional carbon cloth for lithium–sulfur (Li–S) battery. The polar Co9S8 provides strong chemical binding to immobilize polysulfides, which enables efficiently suppressing of the shuttle effect. The free-standing S@Co9S8 polyhedron array-based cathode exhibits ultrahigh capacity of 1079 mAh g−1 after cycling 100 times at 0.1 C, and long cycling life of 500 cycles at 1 C, recoverable rate-performance and good temperature tolerance. Furthermore, the adsorption energies towards polysulfides are investigated by using density functional theory calculations, which display a strong binding with polysulfides.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.