Abstract

In this work we propose a novel implementation on recent Xilinx FPGA platforms of a PUF architecture based on the NAND SR-latch (referred to as NAND-PUF in the following) which achieves an extremely low resource usage with very good overall performance. More specifically, a 4 bit NAND-PUF macro has been designed referring to the Artix-7 platform occupying only 2 slices. The optimum excitation sequence has been determined by analysing the reliability versus the excitation time of the PUF cells under supply voltage variations. A 128 bit NAND-PUF has been tested on 16 FPGA boards under supply voltage and temperature variations and measured performances have been compared against state-of-the-art PUFs from the literature. The comparison has shown that the proposed PUF implementation exhibits the best reliability performance while occupying the minimum FPGA resource usage achieved in the PUF literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.