Abstract
In this paper, we revisit a two-user space-time line coded uplink non-orthogonal multiple access (STLC-NOMA) system for Internet-of-things (IoT) networks and propose a novel low-complexity STLC-NOMA system. The basic idea is that both IoT devices (stations: STAs) employ amplitude-shift keying (ASK) modulators and align their modulated symbols to in-phase and quadrature axes, respectively, before the STLC encoding. The phase distortion caused by wireless channels becomes compensated at the receiver side with the STLC, and thus each STA’s signals are still aligned on their axes at the access point (AP) in the proposed uplink STLC-NOMA system. Then, the AP can decode the signals transmitted from STAs via a single-user maximum-likelihood (ML) detector with low-complexity, while the conventional uplink STLC-NOMA system exploits a multi-user joint ML detector with relatively high-complexity. We mathematically analyze the exact BER performance of the proposed uplink STLC-NOMA system. Furthermore, we propose a novel expectation-maximization (EM)-based blind energy estimation (BEE) algorithm to jointly estimate both transmit power and effective channel gain of each STA without the help of pilot signals at the AP. Somewhat interestingly, the proposed BEE algorithm works well even in short-packet transmission scenarios. It is worth noting that the proposed uplink STLC-NOMA architecture outperforms the conventional STLC-NOMA technique in terms of bit-error-rate (BER), especially with high-order modulation schemes, even though it requires lower computation complexity than the conventional technique at the receiver.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.