Abstract
In distributed satellite synthetic aperture radar (DS- SAR), along-track and cross-track baselines couple with each other and change dynamically due to formation ∞ying, which makes it di-cult to estimate interferometric baseline accurately. To solve the problem, a novel high-precision baseline estimation approach based on interferometric phase is proposed. By modeling accurate relationship between coupling baselines and two-dimensional (azimuth and range) inteferometric fringe frequency under the ellipsoid earth model, the along-track and cross-track baseline can be estimated separately by interferometric phase decoupling. By selecting several segments from interferometric phase during the whole data-take time and estimating instantaneous baseline of each segment, the dynamic baseline can be obtained via a linear flltering. Besides, to improve the baseline estimation accuracy, Semi-Newton iterative method is applied to acquire high-precision fringe frequency estimation, which can make the baseline estimation achieve centimeter level precision. The simulation validates the approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.