Abstract

In the present study, we have demonstrated the fabrication of novel enzymatic glucose biosensor using glucose oxidase (GOD) as a model enzyme which has been immobilized onto the graphene (GF) and cobalt oxide nanoparticles (Co3O4-NPs) composite modified electrode. The GF/Co3O4-NPs composite was prepared by hydrothermal method and characterized by using scanning electron microscopy, X-ray diffraction and elemental analysis. The GOD immobilized GF/Co3O4-NPs modified electrode shows a well defined redox behaviour indicating the reversible proton and electron transfer reaction of GOD. A heterogeneous electron transfer rate constant (Ks) of immobilized GOD has been calculated to be 3.52s−1 which is much higher than that of GOD immobilized GF supports. The fast electron transfer of GOD is attributed to the excellent biocompatibility of Co3O4-NPs and high conductivity of the GF. The fabricated glucose biosensor exhibits a wider linear response for glucose from 0.5mM to 16.5mM with the sensitivity of 13.52μAmM−1cm−2. In addition, a non-enzymatic H2O2 sensor has been further developed using GF/Co3O4-NPs composite modified electrode. The GF/Co3O4-NPs composite electrode shows an excellent electrocatalytic activity towards H2O2 with the response time of <10s. The H2O2 response at GF/Co3O4-NPs composite modified electrode displays a linear response ranging from 0.2 to 211.5μM with a limit of detection of 0.06μM.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.