Abstract

In this work we introduce a novel metric for characterizing the double-directional propagation environment and use this metric to assess the performance of a SAGE parameter estimator for MIMO channels. Using the IlmProp, a geometry-based MIMO channel modeling tool, we construct synthetic channels for three different scenarios showing: (i) well separated clusters containing dense propagation paths, and single-bounce scattering; (ii) partly overlapping clusters containing widely spread propagation paths, and single-bounce scattering; (iii) unclustered multipath components ("rich scattering"), and double-bounce-only scattering. We model the scatterers and the receiver in the environment as fixed, but the transmitter as moving. The Initialization and Search-Improved SAGE (ISIS) estimation tool is used to extract the propagation paths from the constructed channels. Both true and estimated paths are fed to the new system-independent metric which genuinely reflects the structure of the channel and the compactness of the propagation paths. We use this metric to decide on the accuracy of the channel estimator. The results show a convincing agreement between true and estimated paths.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.