Abstract

Vanadium-based metallic salts, characterized by their intrinsic low electronic conductivity, are impeding their advancement as anode materials in the realm of lithium-ion battery technology. This study presents a novel embedded anode material KVO3/NC (KVO/NC) synthesized via a sol–gel method, with KVO3 (KVO) particles in situ growing on N-doped carbon, thereby ameliorating conductivity and electrochemical performance. The findings reveal that KVO/NC composite has three lithium-ion storage sites, ultra-high cycling stability (289 mA h/g@5000 cycles@10 C@100 %), and superior rate performance (249 mA h/g@15 C; 221 mA h/g@20 C). Coupled with LiFePO4 cathode, it achieves a competitive energy density (391 W h kg−1@0.1 C; 1–3.9 V). This work reveals the practical potential of KVO/NC as a new type of lithium-ion battery anode material with high energy density and long cycle life through a series of ex situ/in situ characterizations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.