Abstract
Nitrogen-doped carbon quantum dots (N-CQDs) with an average diameter of 2 nm were synthesized by carbonization of diethylene triamine pentacetate acid (DTPA). The simple prepared N-CQDs showed excellent electrochemiluminescence (ECL) property and were used as luminophors to fabricate a sandwich-type ECL immunosensor. Aminated graphene (NH2-G) was also synthesized and used as a label of secondary antibody. The labeled NH2-G could effectively quench the ECL of N-CQDs modified on electrodes due to ECL resonance energy transfer (ERET). Immunological recognition which induced ECL quenching enabled the quantitative determination of biomarkers. Alpha fetoprotein (AFP) was selected as a model analyte to investigate the analytical performance of the proposed immunosensor. Under optimal conditions, a good linear relationship between ECL intensity and the logarithm of AFP concentration was obtained in the range of 0.01–100 ng mL−1 with the detection limit of 3.3 pg mL−1. The proposed ECL immunosensor showed good stability, acceptable selectivity and reproducibility.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.