Abstract

A novel electrochemical detection method based on a nickel ferrite@graphene (NiFe2O4@Gr) nanocomposite-containing molecularly imprinted polymer (MIP) was developed for the sensitive determination of butylated hydroxyanisole (BHA). After successful completion of the nanocomposite production under hydrothermal conditions, the NiFe2O4@Gr nanocomposite and a novel molecularly imprinted sensor based on the NiFe2O4@Gr nanocomposite were characterized using microscopic, spectroscopic and electrochemical techniques. According to the characterization results, the synthesis of the core-shell type NiFe2O4@Gr nanocomposite with high purity and efficiency has been proved to be successful. After successful modification of a cleaned glassy carbon electrode (GCE) with the NiFe2O4@Gr nanocomposite, analytical applications were started with the prepared BHA printed GCE. This novel molecularly imprinted electrochemical sensor for BPA detection demonstrated a linearity of 1.0 × 10-11-1.0 × 10-9 M and a low detection limit (LOD, 3.0 × 10-12 M). In addition, the BHA imprinted polymer based on the NiFe2O4@Gr nanocomposite also exhibited excellent selectivity, stability, reproducibility and reusability performances in flour analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.