Abstract

Elastic ring squeeze film dampers (ERSFDs) show superior performances in vibration and noise control in a rotor-bearing system. Currently, the industry of spiral bevel gears is also interested in introducing ERSFDs to improve their dynamic performances. This manuscript develops a new accurate mathematical model of ERSFDs based on the generalized Reynolds equation and proposes a semi-analytical method to calculate the elastic ring deformation of ERSFDs. Moreover, an innovative numerical strategy for calculating the oil-film pressure distribution is presented, and Simpson’s rule is utilized to calculate the oil-film force of ERSFDs. Then the dynamic model of a spiral bevel gear drive supported on ERSFDs is developed by coupling the motion equations of the gear system with the oil-film force, and the dynamic characteristics of the system are studied for the first time. The new mathematical model and oil-film pressure calculation method of ERSFDs proposed in this work can be well applied to the gear system, and the ERSFD has better performance than the classical squeeze film damper in suppressing the nonlinear characteristics of systems in the speed range of 7100–8100 rpm. Besides, the mathematical model and oil-film pressure calculation method of ERSFDs proposed in this paper can be extended to all rotating machinery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.