Abstract

Lateral ankle sprains (LAS) are among the most common joint injuries, and although most are resolved with conservative treatment, others develop chronic ankle instability (AI). Considerable attention has been directed toward understanding the underlying causes of this pathology; however, little is known concerning the neuromuscular mechanisms behind AI. A biomechanical analysis of the landing phase of a drop jump onto a device that simulates the mechanism of a LAS may give insight into the dynamic restraint mechanisms of the ankle by individuals with AI. Furthermore, work evaluating subjects who have a history of at least one lateral ankle sprain, yet did not develop AI, may help elucidate compensatory mechanisms following a LAS event. Identifying proper neuromuscular control strategies is crucial in reducing the incidence of AI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.