Abstract

Non-specific adsorption of bioprobes based on surface-enhanced Raman spectroscopy (SERS) technology inevitably endows white blood cells (WBC) in the peripheral blood with Raman signals, which greatly interfere the identification accuracy of circulating tumor cells (CTCs). In this study, an innovative strategy was proposed to effectively identify CTCs by using SERS technology assisted by a receiver operating characteristic (ROC) curve. Firstly, a magnetic Fe3O4-Au complex SERS bioprobe was developed, which could effectively capture the triple negative breast cancer (TNBC) cells and endow the tumor cells with distinct SERS signals. Then, the ROC curve obtained based on the comparison of SERS intensity of TNBC cells and WBC was used to construct a tumor cell identification model. The merit of the model was that the detection sensitivity and specificity could be intelligently switched according to different identification purposes such as accurate diagnosis or preliminary screening of tumor cells. Finally, the difunctional recognition ability of the model for accurate diagnosis and preliminary screening of tumor cells was further validated by using the healthy human blood added with TNBC cells and blood samples of real tumor patients. This novel difunctional identification strategy provides a new perspective for identification of CTCs based on the SERS technology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.