Abstract
Deformation of leaf springs leads to axis drift and warping of traditional cross-spring flexure hinges, which result in rotation errors. To restrain the axis drift and warping, a design idea of reverse parallel connection was proposed by combining the invention principles of "merging," "symmetry," "the other way round," and "another dimension." Based on the idea, the Reverse Parallel Multiple-Cross-Spring (RPMCS) flexure hinge without warping was designed. Taking the RPMCS-3 flexure hinge as an example, experimental and simulation results of the flexure hinge consistently demonstrate that the rotational stiffness remains nearly constant under driving torque, and the relative error is substantially stabilized within 10%. In addition, the rotation accuracy of quasi-zero axis drift under torque is demonstrated by simulation results. Furthermore, the anti-interference performance of rotational stiffness and rotation accuracy is studied, which provides a reference for analyzing the performance and stability of the flexure hinge under disturbances. The rotational performance of the flexure hinge is obviously higher than other flexure hinges that existed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.