Abstract

This paper presents a novel direct digital frequency synthesis (DDFS) ROM compression technique based on two properties of a sine function: (a) piecewise linear technique to approximate a sinusoid, and (b) variation in the slope of the sinusoid at different phase angles. In the proposed DDFS architecture the ROM stores a few of the sinusoidal values, and the interpolation points between the successive stored values are calculated using linear and nonlinear addressing schemes. The nonlinear addressing scheme is used to adaptively vary the number of interpolation points as the slope of the sinusoid changes, leading to a greatly reduced ROM size. The proposed architecture achieves a high compression ratio with a spurious response comparable to that of recent ROM compression techniques. To validate the proposed DDS architecture, the linear, nonlinear, and conventional DDS ROM architectures were implemented in a Xilinx Spartan II FPGA and their spurious performances were compared.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.