Abstract

In this study, a novel control law including a fine-tuned PID component to yield basic dynamic performance, and a component derived from the Sliding Mode Observer (SMO) to estimate and then compensate for modeling uncertainties and disturbances, has been introduced to planar actuator of an ultra-precision positioning stage. Experimental results are presented to verify the effectiveness of suggested dynamic compensation strategy and tracking performance of the non-contact planar actuator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.