Abstract
In recent years, increasing utilize of the adhesively bonded joints due to its prominent features in distribution of the stress in bonded area and bonding dissimilar material has led to developing its computational aspects to provide more reliable response. In this regard, cohesive zone model (CZM) as an effective method to simulate bondline is introduced. The crucial aspect of this method is the determination of the relation between traction and separation in fracture process zone (FPZ). In fact, the traction-separation law (TSL) is a material model which must be properly obtained and applied to the adhesive bondline. According to the literature, mechanical response of the adhesive joints in most cases (especially in ductile and semi-brittle adhesives) is depended on the TSL curve shape. In this study, a novel CZM is developed to simulate double cantilever beam (DCB) adhesive joint. The main advantageous this new model is considering non-linear behavior of ductile adhesives in elastic region. DCB coupons fabricated by means of Al 6061 adherends and Araldite 2015 adhesive. After direct extraction of the TSL and obtaining cohesive parameters of the new model, numerical simulation of the DCB is conducted. Finally, sensitivity analysis of cohesive parameters and effect of initial crack length on the DCB response is investigated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Computational Physics Series
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.