Abstract

SummaryMobile ad‐hoc network (MANET) is a group of self‐organized autonomous wireless devices that serve communication in human unattended and emergency environments. The network is decentralized and uses wireless links for communication, which is vulnerable to network resource depletion rapidly. Energy and link stability are vital factors that support the prolonged operation of the network, obstructing earlier resource depletions. These depletions are overwhelmed with the help of scattered, isolated nodes; the process of augmenting them increases the control overhead. We propose a genetic algorithm‐based routing (GAR) with fault route recovery (FRR) caused due to isolated nodes. In this method, clustering is used for energy balancing for retaining the live nodes' count reliably. The FRR phase prevents cluster head flooding using the local rerouting process. The former phase of GAR‐FFR governs the network's energy optimization aiming at controlled energy consumption. The later part reduces routing overhead due to route failures, preventing backtracking to the cluster head. The proposed GAR‐FFR is analyzed using the following metrics: throughput, packet delivery ratio, live nodes count, remaining energy, and routing overhead. The proposed GAR‐FRR achieves 15.4% high throughput, 16.29% high live nodes, 8.9% high remaining energy, and 21.04% fewer control packets for different rounds, compared with the existing A‐ECOPS and REAC‐IN methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.