Abstract

Making use of ergodicity and randomness of chaos, a novel chaos danger model immune algorithm (CDMIA) is presented by combining the benefits of chaos and danger model immune algorithm (DMIA). To maintain the diversity of antibodies and ensure the performances of the algorithm, two chaotic operators are proposed. Chaotic disturbance is used for updating the danger antibody to exploit local solution space, and the chaotic regeneration is referred to the safe antibody for exploring the entire solution space. In addition, the performances of the algorithm are examined based upon several benchmark problems. The experimental results indicate that the diversity of the population is improved noticeably, and the CDMIA exhibits a higher efficiency than the danger model immune algorithm and other optimization algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.