Abstract
Hydrodynamic pressure is an important factor that cannot be ignored in the seismic safety evaluation of dams. However, when the polyhedron-scaled boundary finite element method is used to simulate dams in a cross-scale dynamic analysis, polygonal surfaces often appear on the upstream face of dams, which is difficult to deal with for conventional methods of hydrodynamic pressure. In this paper, a three-dimensional calculation method of hydrodynamic pressure based on the polyhedron-scaled boundary finite element method is proposed, in which polygon (triangle, quadrilateral, pentagon, hexagon, heptagon, octagon, etc.) semi-infinite prismatic fluid elements are constructed using the mean-value shape function. The proposed method, with a high efficiency, overcomes the limitation of conventional methods in which only quadrangle or triangle boundary faces of elements are permitted. The accuracy of the proposed method is proved to be high when considering various factors. Furthermore, combined with the polyhedron-scaled boundary finite element method for a solid dam, the proposed method for reservoir water is used to develop a nonlinear dynamic coupling method for cross-scale concrete-faced rockfill dam-reservoir systems based on the polyhedron SBFEM. The results of the numerical analysis show that when the hydrodynamic pressure is not considered, the error of rockfill dynamic acceleration and displacement could reach 15.4% and 12.7%, respectively, and the error of dynamic face slabs’ stresses could be 24.9%, which is not conducive to a reasonable seismic safety evaluation of dams.
Highlights
Summary
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.