Abstract

3-D braided composite three-way circular tubes are integrated seamless connected tubes used for high strength connecting joints. We developed a novel braiding method of ‘yarn-added, yarn realigned’ to prepare three-way tubular preforms. Low-velocity impact compressions (LVIC) along axial direction were conducted to find effects of branch length and braiding layers on impact damage with drop-weight tester, high-speed camera, Micro-CT and digital image correlation (DIC). It was found that the three-way braided tubes have uniform structure both at the branches and joint regions. There is shear band induced by the weakened interface appeared after the peak load and formed within 60 μs under impact. The ultimate strength was positively correlated with the impact energy and braiding layers, while negatively correlated with the branch tube length. The test results showed that the branch length affected the position of stress concentration, and the influence of braiding layers on the LVIC behaviors is more significant than that of the branch length.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.