Abstract

A novel BF2–curcumin-based chemosensor 1, namely monopicolinate of BF2–curcumin complex, was designed, synthesized and applied for the detection of Cu2+ in aqueous buffer solution and living cells. Sensor 1 exhibited sensitive naked-eye color change toward Cu2+ from blue to pink in TBS solution and the detection limit was estimated to be 0.12 µM. The selectivity of sensor 1 for Cu2+ was high over competing metal ions (Ag+, Cu+, Hg2+, Mg2+, Ca2+, Co2+, Zn2+, Mn2+, Ni2+, Fe2+ and Fe3+). Based on the experimental results, the sensing mechanism was proposed for the Cu2+ triggered hydrolysis of 1 to BF2–curcumin which has unique chromogenic and fluorogenic properties. Compared with other chemosensors with a similar mechanism, chemosensor 1 had a comparatively large Stokes shift and the emission wavelength was close to NIR. Moreover, cell imaging investigations indicated that sensor 1 has the potential to be applied for practical Cu2+ detection in biological systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.