Abstract
Bayesian Belief Networks (BBN) combine available statistics and expert knowledge to provide a succinct representation of domain knowledge under uncertainty. Learning BBN structure from data is an NP hard problem due to enormity of search space. In recent past, heuristics based methods have simplified the search space to find optimal BBN structure (based on certain scores) in reasonable time. However, slow convergence and suboptimal solutions are common problems with these methods. In this paper, a novel searching algorithm based on bio-inspired monkey search meta-heuristic has been proposed. The jump, watch-jump and somersault sub processes are designed to give a global optimal solution with fast convergence. The proposed method, Monkey Search Structure Leaner (MS2L), is evaluated against five popular BBN structure learning approaches on model construction time and classification accuracy. The results obtained prove the superiority of our proposed algorithm on all metrics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.