Abstract

Perinatal hypoxic-ischemic encephalopathy (HIE) is a major cause of acute mortality and chronic neurologic morbidity in infants and children. HIE is the most common cause of neonatal seizures, and seizure activity in neonates can be clinical, with both EEG and behavioral symptoms, subclinical with only EEG activity, or just behavioral. The accurate detection of these different seizure manifestations and the extent to which they differ in their effects on the neonatal brain continues to be a concern in neonatal medicine. Most experimental studies of the interaction between hypoxia-ischemia (HI) and seizures have utilized a chemical induction of seizures, which may be less clinically relevant. Here, we expanded our model of unilateral cerebral HI in the immature rat to include video EEG and electromyographic recording before, during and after HI in term-equivalent postnatal-day-12 rats. We observed that immature rats display both clinical and subclinical seizures during the period of HI, and that the total number of seizures and time to first seizure correlate with the extent of tissue damage. We also tested the feasibility of developing an automated seizure detection algorithm for the unbiased detection and characterization of the different types of seizure activity observed in this model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.