Abstract

Calculating cost-effective solutions to particle dynamics in viscous flows is an important problem in many areas of industry and nature. We implement a second-order symmetric splitting method on the governing equations for a rigid spheroidal particle model with torques, drag and gravity. The method splits the operators into a vector field that is conservative and one that takes into account the forces of the fluid. Error analysis and numerical tests are performed on perturbed and stiff particle-fluid systems. For the perturbed case, the splitting method greatly improves the solution accuracy, when compared to a conventional multistep method, and the global error behaves as $\mathcal {O}(\varepsilon h^{2})$ for roughly equal computational cost. For stiff systems, we show that the splitting method retains stability in regimes where conventional methods blow up. In addition, we show through numerical experiments that the global order is reduced from $\mathcal {O}(h^{2}/\varepsilon )$ in the perturbed regime to $\mathcal {O}(h)$ in the stiff regime.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.