Abstract

Evolutionary methods are well-known techniques for solving nonlinear constrained optimization problems. Due to the exploration power of evolution-based optimizers, population usually converges to a region around global optimum after several generations. Although this convergence can be efficiently used to reduce search space, in most of the existing optimization methods, search is still continued over original space and considerable time is wasted for searching ineffective regions. This paper proposes a simple and general approach based on search space reduction to improve the exploitation power of the existing evolutionary methods without adding any significant computational complexity. After a number of generations when enough exploration is performed, search space is reduced to a small subspace around the best individual, and then search is continued over this reduced space. If the space reduction parameters (red_gen and red_factor) are adjusted properly, reduced space will include global optimum. The proposed scheme can help the existing evolutionary methods to find better near-optimal solutions in a shorter time. To demonstrate the power of the new approach, it is applied to a set of benchmark constrained optimization problems and the results are compared with a previous work in the literature.

Highlights

  • A significant part of today’s engineering problems are constrained optimization problems (COP)

  • These approaches can be grouped in four major categories [1, 2]: (1) methods based on penalty functions that are known as indirect constraint handling, (2) methods based on a search of feasible solutions including repairing unfeasible individuals [3, 4], superiority of feasible points [5], and behavioral memory [6], (3) methods based on preserving feasibility of solutions like preserving feasibility by designing special crossover and mutation operators [7], the GENOCOP system [8], searching the boundary of feasible region [9], and homomorphous mapping [10], and (4) Hybrid methods [11,12,13]

  • This paper demonstrates how the power of exploitation of constrained evolutionary optimization (EO) (CEO) can be increased by reducing the search space after enough exploration is performed

Read more

Summary

Introduction

A significant part of today’s engineering problems are constrained optimization problems (COP). Various techniques have been introduced for handling nonlinear constrains by evolutionary optimization (EO) methods These approaches can be grouped in four major categories [1, 2]: (1) methods based on penalty functions that are known as indirect constraint handling, (2) methods based on a search of feasible solutions including repairing unfeasible individuals [3, 4], superiority of feasible points [5], and behavioral memory [6], (3) methods based on preserving feasibility of solutions like preserving feasibility by designing special crossover and mutation operators [7], the GENOCOP system [8], searching the boundary of feasible region [9], and homomorphous mapping [10], and (4) Hybrid methods [11,12,13].

Proposed Approach
Experimental Study
Findings
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.