Abstract

Freezing tumours and ablating it using cryosurgery is becoming a popular surgical procedure for treatment of carcinomas. In order to improve the efficiency of the cryosurgical procedure different approaches have been implemented till now, e.g., injecting high thermal conductivity fluid inside the tumour, low latent heat fluids inside the tumour prior to cryosurgery etc. These techniques improve the cryosurgical process to some extent but lack in minimising the damage to the surrounding healthy tissues. In this study, a novel concept is proposed which advocates the use of solutions with specific thermophysical properties around the interface of tumour. Numerical modelling has been done to determine the location of the ice fronts in the presence of this solution around the boundary of the tumour. It is noticed that in the presence of solution layer, owing to its distinct thermophysical properties like low thermal conductivity, not only the cellular destruction is enhanced but also the damage to the surrounding healthy tissue is minimised. Further, results indicate that this strategy leads to a faster ablation rate reducing the surgical time immensely. Also, an optimal offset, the minimum distance between the tip of cryoprobe and the boundary of the tumour, is identified for a given tumour radius with a given active length which gives maximum tumour necrosis in less time. This optimal offset which has been identified for each case will help the surgeons in proper planning of cryosurgery and improving the effectiveness of this technique greatly, making it a better treatment modality than its counterparts in many ways. It is also observed that for a 2mm increase in activelength of the cryoprobe, the decrease in optimal offset is approximately 1mm, i.e. optimal offset decreases linearly with an increase in the activelength for a given radius of the tumour. Also, for tumour with different radii, ranging between 10mm to 15mm, with same active length, the time taken for complete ablation by the larger tumour is nearly 2.7 times the time taken by the smaller one for every 2.5mm increase in the tumour radius.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.