Abstract

The paper reports a sustainable, fast and efficient methodology to treat natural hemp fibers (HF) using a mechanochemical approach. Mechanical milling was used to carry out an alkaline attack on HFs for 30 min at ambient temperature. Composites HF/pectins were prepared by varying the fiber weight fraction (3%; 7.5%; 10%; 20% w/w by weight). The improvement in thermal degradation, mechanical and barrier properties to water vapor was correlated with the fiber volume fraction and mainly due to the improved fiber-matrix adhesion. The fibers–matrix interaction was then evaluated by analyzing and modeling the mechanical properties using several mathematical models: a modified Nielsen and Pukànszky and Smith models. Sorption isotherms to water vapor were analyzed through a modified Guggenheim, Anderson, de Boer (GAB) model where a new parameter, α, was introduced to consider the heterogeneity of the system. Finally, a modified Burgemman model was used to fit the experimental data and support the improvement in water diffusion with fiber loading.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.