Abstract

AbstractRobots with telepresence capabilities are typically employed for tasks where human presence is not feasible due to geography, safety risks like fire or radiation exposure, or other factors like any epidemic disease. Time delay is a significant consideration in controlling a telepresence robot. This study proposes a deep learning‐based approach to compensate for the delay by predicting the behaviour of the teleoperator. The authors integrate a recurrent neural network (RNN) based on the Long Short‐Term Memory (LSTM) architecture with the reinforcement learning‐based Deep Deterministic Policy Gradient (DDPG) algorithm. The proposed method predicts the teleoperator's angular and linear controlling commands by using data gathered by embedded sensors on the specially designed and built telepresence robot. Simulations and experiments assess the operation of the proposed technique in Gazebo simulation and MATLAB with robot operating system (ROS) integration, which shows 2.3% better response in the presence of static.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.