Abstract
Capping as well as lamination are two common problems, which affect the resulting product quality of the tablet. Usually, capping and lamination occur during or after tablet manufacturing, and may therefore influence follow-up processes such as the coating. In this context, there is an urgent need for approaches to overcome the occurrences of capping and lamination. In the present study, a novel lower punch vibration technique was used to decrease the capping or lamination tendency of different powder formulations. Different microcrystalline cellulose types, as well as an API (acetaminophen), were selected as model powders. The powders were investigated regarding their powder flow, density, particle morphology, and surface area. Moreover, the manufactured tablets were characterized regarding their tablet weight, tensile strength, and capping or lamination indices. It was shown that the capping or lamination tendency was strongly affected by the physical powder properties, the formulation composition, and the adjusted turret speed. In addition, the application of externally applied lower punch vibration led to a pronounced decrease of the capping or lamination tendency and improved mechanical stability of the manufactured tablets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.