Abstract

Cyclic lipopeptides (CLiPs) are a highly diverse class of secondary metabolites produced by bacteria and fungi. Examples of CLiPs have been found that possess potent antimicrobial activity against multidrug-resistant Gram-negative bacteria. Globomycin is a 19-membered CLiP that kills both Gram-positive and Gram-negative bacteria through inhibition of lipoprotein signal peptidase II (Lsp). It can only be obtained in small quantities from its Streptomyces producer strain, so there has been much interest in development of synthetic methods to access globomycin and analogues. Globomycin contains an N-terminal anti-α-methyl-β-hydroxy nonanoyl lipid tail, whose hydroxyl group forms an ester with the C-terminal carboxylate. Constructing the anti-arrangement between the α-methyl and β-hydroxy is synthetically challenging and previous globomycin syntheses are not compatible with diversification of the lipid tail after the stereocenters have been installed. Herein, we describe a new approach for the synthesis of globomycin that allows for facile lipid diversification. Using an anti-Evans Aldol condensation, a common intermediate is obtained that allows different "lipid swapping" through Grubbs-catalyzed cross-metathesis. Upon auxiliary cleavage, the resulting lipid can then be utilized in solid-phase peptide synthesis. Given the plethora of lipopeptides that contain β-hydroxy lipids, this method offers a convenient approach for convergent generation of lipopeptide analogues.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.