Abstract
Nicotine is an alkaloid mainly found in leaves of tobacco and is used therapeutically for patients seeking relief from tobacco dependence in the form of products such as gums, patches, lozenges etc. In these products, majorly nicotine derived from tobacco is used which is inherently contaminated with undesirable nicotine related substances as impurities at low levels and is difficult to remove. Hence, use of synthetic nicotine is considered as an option which will be devoid of such impurities. In this work, a short and efficient synthesis of (R) and (S) nicotine was achieved by leveraging a key esterification between racemic homoallylic alcohol intermediate (2) and (S)-Ibuprofen (3) to produce diastereomers (5a) and (5b) which were easily separable under standard column chromatography conditions. Use of (S)-Ibuprofen (3) as a chiral resolving agent constitutes a novel approach which was not reported earlier. A subsequent hydrolysis of the diastereomers furnished the homoallylic alcohol intermediates (S)-6a and (R)-6a with high enantiopurity, which was effectively translated to the corresponding (R)-nicotine and (S)-nicotine respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.