Abstract
A peak fitting procedure has been implemented for calculating crystallinity in granular starches. This methodology, widely used for synthetic polymers, is proposed to better reflect the crystalline content of starches than the method normally used, in which it is assumed that relatively perfect crystalline domains are interspersed with amorphous regions. The new approach takes into account irregularities in crystals that are expected to exist in semicrystalline materials. Therefore, instead of assuming that the amorphous background extends up to the base of diffraction peaks, the whole X-ray diffraction (XRD) profile is fitted to an amorphous halo and several discrete crystalline diffraction peaks. The crystallinity values obtained from the XRD patterns of a wide range of native starches using this fitting technique are very similar to the double helix contents as measured by (13)C solid state NMR, suggesting that double helices in granular starches are present within irregular crystals. This contrasts with previous descriptions of crystalline and noncrystalline double helices that were based on the analysis of XRD profiles as perfect crystals interspersed in a noncrystalline background. Furthermore, with this fitting methodology it is possible to calculate the contribution from the different crystal polymorphs of starch to the total crystallinity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.