Abstract

Conventional PAH analytical methods are time-consuming and expensive, limiting their utility in time sensitive events (i.e. oil spills and floods) or for widespread environmental monitoring. Unreliable and inefficient screening methods intended to prioritize samples for more extensive analyses exacerbate the issue. Antibody-based biosensor technology was implemented as a quantitative screening method to measure total PAH concentration in adult oysters (Crassostrea virginica) - a well-known bioindicator species with ecological and commercial significance. Individual oysters were analyzed throughout the historically polluted Elizabeth River watershed (Virginia, USA). Significant positive association was observed between biosensor and GC-MS measurements that persisted when the method was calibrated for different regulatory subsets of PAHs. Mapping of PAH concentrations in oysters throughout the watershed demonstrates the utility of this technology for environmental monitoring. Through a novel extension of equilibrium partitioning, biosensor technology shows promise as a cost-effective analysis to rapidly predict whole animal exposure to better assess human health risk as well as improve monitoring efforts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.