Abstract

Latent antithrombin, an inactive antithrombin form with low heparin affinity, has previously been shown to efficiently inhibit angiogenesis and tumor growth. We now show that heat treatment similar to that used for preparation of latent antithrombin also transforms antithrombin to another form, which we denote prelatent, with potent anti-angiogenic and anti-tumor activity but with retained proteinase- and heparin-binding properties. The ability of prelatent antithrombin to inhibit angiogenesis is presumably due to a limited conformational change, which may partially resemble that in latent antithrombin. Such a change is evidenced by a different cleavage pattern of prelatent than of native antithrombin by nontarget proteinases. Prelatent antithrombin exerts its anti-angiogenic effect by a similar mechanism as latent antithrombin, i.e. by inhibiting focal adhesion formation and focal adhesion kinase activity, thereby leading to decreased proliferation of endothelial cells. The proteinase inhibitory fractions in commercial antithrombin preparations, which have been heat treated during production, also have anti-angiogenic activity, comparable with that of the prelatent antithrombin form.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.