Abstract

The mechanical properties of carbon fiber (CF) reinforced composites are greatly dependent on the interfacial adhesion between fiber and resin matrix. Introducing nanoscale reinforcements into the interface is an effective approach to improve the interfacial adhesion of CF composites. In this paper, we proposed a facile and effective method for assembling poly(cyclotriphosphazene-co-4,4′-sulfonyldiphonel) nanotube onto CF surface as a novel multi-scale hybrid reinforcement through in situ template polymerization. The effects of surface modification on the surface and interface properties of CF and the resulting composite were investigated. After modification, the interfacial shear strength of fiber reinforced epoxy composites showed an increase of 26.4%. The reinforcing mechanisms were also analyzed, and the improvements on interfacial properties should mainly be attributed to mechanical interlocking effect. In addition, the modification even improved the fiber tensile strength by 6.6–16.3%, rather than deteriorating it.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.