Abstract

Modeling and simulation lie at the heart of the design process of any nuclear application. An accurate representation of the radiation environment ensures not only the feasibility of new technologies, but it also aids in operation, maintenance, and even decommissioning. With increasingly complex designs, high-fidelity models have become a necessity for design maturity. McCAD has been under development for many years at Karlsruhe Institute of Technology (KIT) to facilitate the process of generating suitable models for nuclear analyses. In this paper, an overview of the major advances in the new version of the code is presented. A novel conversion algorithm has proven to be robust in significantly reducing the processing time to generate radiation transport models, making it easier to iterate on design details. A first-of-a-kind capability to generate hierarchical void cells is also discussed with preliminary analysis showing performance gains for particle tracking.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.