Abstract

Conventional single-phase inverters exhibit double line frequency power pulsating, which affects dc sources such as photovoltaic performance and battery lifetime. Bulky dc-link electrolytic capacitors are typically employed as transient energy buffer to decouple the pulsating ac power from constant dc power, but such passive components suffer from temperature and aging concerns. For high reliability and high power density, active power decoupling approach is preferred. This paper presents a novel active power decoupling method by using a six-switch single-phase inverter topology. A small film capacitor is used as pulsating energy buffer in ac side, which not only improves the reliability but also the efficiency. A novel vector PWM for this topology is also proposed to maximize the dc voltage utilization, and to achieve the independent controls of the inverter output power and power decoupling. The simulation results have verified the proposed power decoupling method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.