Abstract
We mainly investigate the likely limit sets and the kneading sequences of unimodal Feigenbaum's maps (Feigenbaum's map can be regarded as the fixed point of the renormalization operator [Formula: see text], where λ is to be determined). First, we estimate the Hausdorff dimension of the likely limit set for the unimodal Feigenbaum's map and then for every decimal s ∈ (0, 1), we construct a unimodal Feigenbaum's map which has a likely limit set with Hausdorff dimension s. Second, we prove that the kneading sequences of unimodal Feigenbaum's maps are uniformly almost periodic points of the shift map but not periodic ones.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.