Abstract
We study the quantization with respect to the geometric mean error for probability measures μ on \({\mathbb{R}^d}\) for which there exist some constants C, η > 0 such that \({\mu(B(x,\varepsilon))\leq C\varepsilon^\eta}\) for all e > 0 and all \({x\in\mathbb{R}^d}\) . For such measures μ, we prove that the upper quantization dimension \({\overline{D}(\mu)}\) of μ is bounded from above by its upper packing dimension and the lower one \({\underline{D}(\mu)}\) is bounded from below by its lower Hausdorff dimension. This enables us to calculate the quantization dimension for a large class of probability measures which have nice local behavior, including the self-affine measures on general Sierpinski carpets and self-conformal measures. Moreover, based on our previous work, we prove that the upper and lower quantization coefficient for a self-conformal measure are both positive and finite.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.