Abstract

We study the motion of surfaces in an intrinsic formulation in which the surface is described by its metric and curvature tensors. The evolution equations for the six quantities contained in these tensors are reduced in number in two cases: (i) for arbitrary surfaces, we use principal coordinates to obtain two equations for the two principal curvatures, highlighting the similarity with the equations of motion of a plane curve; and (ii) for surfaces with spatially constant negative curvature, we use parameterization by Tchebyshev nets to reduce to a single evolution Equation. We also obtain necessary and sufficient conditions for a surface to maintain spatially constant negative curvature as it moves. One choice for the surface's normal motion leads to the modified Korteweg-de Vries equation, the appearance of which is explained by connections to the AKNS hierarchy and the motion of space curves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.