Abstract

AbstractThe existence of transversal ejection—collision orbits in the restricted three-body problem is shown to imply, via the KAM theorem, the existence, for certain intervals of (large) values of the Jacobi constant, of an uncountable number of invariant punctured tori in the corresponding (non-compact) energy surface. The proof is based on a comparison between Levi-Civita and McGehee regularizing variables. That these transversal ejection-collision orbits do actually exist was proved in [5] in the case where one of the primaries has a small mass and the zero-mass body revolves around the other (and for all values of the Jacobi constant compatible with the existence of three connected components for the Hill region); it is proved here without any restriction on the masses, well in the spirit of Conley's thesis [3].

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.