Abstract

In the present work, we consider the propagation of nonlinear electron-acoustic non-planar waves in a plasma composed of a cold electron fluid, hot electrons obeying a trapped/vortex-like distribution, and stationary ions. The basic nonlinear equations of the above described plasma are re-examined in the cylindrical coordinates through the use reductive perturbation method in the long-wave approximation. The modified cylindrical Korteweg–de Vries equation with fractional power nonlinearity is obtained as the evolution equation. Due to the nature of nonlinearity, which is fractional, this evolution equation cannot be reduced to the conventional Korteweg–de Vries equation. An analytical solution to the evolution equation, by use of the method developed by Demiray [Appl. Math. Comput. 132, 643 (2002); Comput. Math. Appl. 60, 1747 (2010)] and a numerical solution by employing a spectral scheme are presented and the results are depicted in a figure. The numerical results reveal that both solutions are in good agreement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.