Abstract

Phellinus sulphurascens (previously the Douglas-fir form of Phellinus weirii) is an important native pathogen causing laminated root rot in forests of western North America. Visual crown symptoms, or attacks by bark or ambrosia beetles appear only during advanced stages of the disease with extensive infection in the lower bole. Ethanol synthesis is one of many physiological responses in tree tissues stressed by pathogens. Ethanol, acetone and other volatiles from root tissues of healthy and diseased trees were analyzed using headspace gas chromatography. Xylem and phloem from 20 diseased trees at two western Oregon sites contained higher concentrations of ethanol, acetone, or other headspace volatiles than 20 healthy trees on one or more dates in September, November, or the following May. Root cross-sections from eight diseased trees were sampled along perpendicular transects and found to contain extremely variable ethanol concentrations, with highest xylem quantities in a 0–2 cm zone outside the infection boundary and lowest amounts inside the infection. Acetone concentrations were the opposite. Logistic regression models were built and tested to determine which volatiles could predict diseased trees. A model using xylem ethanol concentrations as the only parameter was selected and validated with measurements from 80 trees on the edges of P. sulphurascens infection centers at two different western Oregon sites. This model successfully predicted trees with laminated root rot (78% overall correct classification and 68% for known diseased trees), but worked best for those with infections observed in both root cores and the root collar (100% correct). Early detection of P. sulphurascens infected trees remains a challenge. Our ethanol analysis method is useful for research, but provides limited benefits for identifying individual P. sulphurascens hazard trees, or for extensive ground surveys in the forest. Whether ethanol is released to the atmosphere in sufficient quantities to confirm infection before the late appearance of crown symptoms, or bark beetles remains unknown. If it is, then development of sensors capable of tree side detection requiring minimal tissue sampling would be useful in managing this disease. We also propose a mechanism for how ethanol with host monoterpenes could play a central role in pioneering bark beetle primary host selection of trees infected with this pathogen.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.