Abstract

ABSTRACTIn the present work, a finite element approach is developed for the static analysis of curved nanobeams using nonlocal elasticity beam theory based on Eringen formulation coupled with a higher-order shear deformation accounting for through-thickness stretching. The formulation is general in the sense that it can be used to compare the influence of different structural theories, through static and dynamic analyses of curved nanobeams. The governing equations derived here are solved introducing a 3-nodes beam element. The formulation is validated considering problems for which solutions are available. A comparative study is done here by different theories obtained through the formulation. The effects of various structural parameters such as thickness ratio, beam length, rise of the curved beam, loadings, boundary conditions, and nonlocal scale parameter are brought out on the static bending behaviors of curved nanobeams.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.