Abstract

Delay differential, difference, and partial differential equation models are being used more extensively to explain single-species population oscillations and limit cycle behavior. Ordinary differential equation (ODE) models have been largely ignored. This is because first-order ODE models are inherently monotonic. Certainly this is not usual population behavior in the real world. If it is assumed that the per capita growth rate of a population changes over time as a result of regulating factors impinging on it, then a more realistic biological model results. The model translates into a second-order nonlinear ODE. Such a model can exhibit oscillatory and limit cycle as well as monotonic solutions, i.e., behavior for which non-ODE models have been used to explain. Although first-order ODE models are gross simplifications of real phenomena, ODE models in general should not be disregarded as important analytical tools.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.