Abstract

This article proposes a nonlinear model predictive control (NMPC) strategy for the position tracking of cable-driven parallel robots (CDPRs). The NMPC formulation handles explicitly the cable tensions and their limits. Accordingly, the cable tension distribution is performed as an integral part of the NMPC feedback control strategy, which notably allows the CDPR to operate on the wrench-feasible workspace boundaries without failure. In order to integrate the cable tension minimization within the NMPC formulation, the concept of wrench equivalent optimality (WEO) is introduced. The WEO is a nonnegative measure able to evaluate if the wrench generated by a given cable tension vector can be generated by an alternative tension vector with smaller 2-norm. The redundancy resolution performed by means of the minimization of the WEO enables the stability of the closed-loop system to be proved. More precisely, sufficient conditions for the uniform asymptotic stability are deduced using results from the analysis of NMPC schemes without terminal constraints and costs. Furthermore, the proposed NMPC strategy is validated experimentally on a fully constrained 6 degree-of-freedom CDPR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.