Abstract

In this paper, a nonlinear mathematical model is proposed and analyzed to study the interactions of hot gases with cloud droplets as well as with raindrops and their removal by rain from the stable atmosphere. The atmosphere, during rain, is assumed to consist of five nonlinearly interacting phases i.e. the vapour phase, the phase of cloud droplets, the phase of raindrops, the phase of hot gaseous pollutants and the absorbed phase of hot gases in the raindrops (if it exists). It is further assumed that these phases undergo ecological type growth and nonlinear interactions. The proposed model is analyzed using stability theory of differential equations and by numerical simulation. It is shown that the cumulative concentration of gaseous pollutants decreases due to rain and its equilibrium level depends upon the density of cloud droplets, the rate of formation of raindrops, emission rate of pollutants, the rate of falling absorbed phase on the ground, etc. It is noted here that if gases are very hot, cloud droplets are not formed and rain may not take place. In such a case gaseous pollutants may not be removed from the atmosphere due to non-occurrence of rain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.