Abstract

<p style='text-indent:20px;'>This paper is devoted to the mathematical and numerical study of a new proposed model based on a fractional diffusion equation coupled with a nonlinear regularization of the Total Variation operator. This model is primarily intended to introduce a weak norm in the fidelity term, where this norm is considered more appropriate for capturing very oscillatory characteristics interpreted as a texture. Furthermore, our proposed model profits from the benefits of a variable exponent used to distinguish the features of the image. By using Faedo-Galerkin method, we prove the well-posedness (existence and uniqueness) of the weak solution for the proposed model. Based on the alternating direction implicit method of Peaceman-Rachford and the approximations of the Gr<inline-formula><tex-math id="M1">\begin{document}$ \ddot{u} $\end{document}</tex-math></inline-formula>nwald-Letnikov operators, we develop the numerical discretization of our fractional diffusion equation. Experimental results claim that our model provides high-quality results in cartoon-texture-edges decomposition and image denoising. In particular, our model can successfully reduce the staircase phenomenon during the image denoising. Furthermore, small details, texture and fine structures still maintained in the restored image. Finally, we compare our numerical results with the existing models in the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.