Abstract

A three-dimensional static nonlinear finite-element model of a 22-day-old newborn middle ear is presented. The model includes the tympanic membrane (TM), malleus, incus, and two ligaments. The effects of the middle-ear cavity are taken into account indirectly. The geometry is based on a computed-tomography scan and on the published literature, supplemented by histology. A nonlinear hyperelastic constitutive law is applied to model large deformations. The middle-ear cavity and the Young's modulus of the TM have significant effects on TM volume displacements. The TM volume displacement and its nonlinearity and asymmetry increase as the middle-ear cavity volume increases. The effects of the Young's moduli of the ligaments and ossicles are found to be small. The simulated TM volume changes do not reach a plateau when the pressure is varied to either -3 kPa or +3 kPa, which is consistent with the nonflat tails often found in tympanograms in newborns. The simulated TM volume displacements, by themselves and also together with previous ear-canal model results, are compared with equivalent-volume differences derived from tympanometric measurements in newborns. The results suggest that the canal-wall volume displacement makes a major contribution to the total canal volume change, and may be larger than the TM volume displacement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.