Abstract

Abstract. In this paper we study freely propagating inertial, i.e., unforced, waves, in an elastic beam constrained so that all motion takes place above and on a flat, rigid support surface, subject to a gravitational force and a compressive longitudinal load. Contact between the beam and the support surface is assumed to be completely inelastic. A nonlinear beam model is used, incorporating a quartic extension of the familiar quadratic potential energy functional for the standard Euler—Bernoulli model. After briefly reviewing the rationale for the model and some of its properties, as developed in earlier articles, we present existence and uniqueness results for the constrained system obtained with the use of a ``penalty function'' approach involving the addition of a ``uni-directional friction'' dissipative term, active only when the constraint is violated, to the unconstrained system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.